7 AD-A18Y 984

vl

SIE1ED

TION SYSTEN FOR A LOW SPEED
S BELBOURNE

CAL_RESEARCH LAD!
FED 03 AR-AERO-R-163

e
i

=

—— e ————— e ——.

—-

AR-003-997

AR-AERO-R-163
@
AUST! 1

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

MELBOURNE, VICTORIA

AD-A161 984

AERODYNAMICS REPORT 163

A REAL-TIME DATA ACQUISITION
SYSTEM FOR A

LOW SPEED WIND TUNNEL DTIC
ZILECTE

DECO 5 185 ;

o A B

B. D. FAIRLIE

| T ———

l V% UNITED STates nationa
TECHICAL INFURMATION SERVICE

I S ALTHMISED 10
HED < N
j TRCOUC: AND SELL TS Repoay

- —— e,
Sty -

‘.‘_-"“.
Approved for Public Release

0TIE FILE COPY

© COMMONWEALTH OF AUSTRALA 1985

85 12 3

]

© re———y

AR-003-997

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

AERODYNAMICS REPORT 163

A REAL-TIME DATA ACQUISITION
SYSTEM FOR A
LOW SPEED WIND TUNNEL

by
B. D. FAIRLIE

SUMMARY

A mini-computer based real-time data acquisition system designed for use in the
Aeronautical Research Laboratories low-speed wind tunnel is presented. The report provides
an overview of the logical arrangement of the software components of the system and
describes their interaction with the mini-computer operating system, data structures,
and system hardware.

© COMMONWEALTH OF AUSTRALIA 1985

PCSTAL ADDRESS: Director, Aeronautical Research Laboratories,
Box 4331, P.O., Melbourne, Victoria, 3001, Australia

2] l-"‘mﬂ.—vw«.—a-w@«l.

|
2
'

v

-

7 el
| N
’ - - -)
y ’
CONTENTS
Page No.
1. INTRODUCTION !
2. OVERALL DESIGN PHILOSOPHY 1
3. HARDWARE 2
4. SERVICES PROVIDED BY THE OPERATING SYSTEM AND EXECUTIVE 4
)
5. DATA STRUCTURES 6
6. SOFTWARE 7
7. FUTURE DEVELOPMENT 15 i
8. CONCLUSIONS 17
]
REFERENCES ’
FIGURES
APPENDIX A—The Digital Data Bus Input/Output Task {DIGIO]
1
APPENDIX B—Format of Configuration Files for Force Measuring Tasks
DISTRIBUTION
)
Accesion For
DOCUMENT CONTROL DATA
NTIS CRA&I
DTIC TAB O - -
Unannounced 0
Justificaton
' By
i vy | T e e, "
\ ‘;Zg"i‘g&ar) Dist ibetion |
_ ~—r Availabiity Codes .
. , Avad a-djor ;
i Dist Special ‘
A-| l
H e
} «n.m:;w T T TR T T e N '
- e)

————

[

1. INTRODUCTION

The low-speed wind tunnel at the Aeronautical Research Laboratories is of the closed-jet
single return type with a test section of irregular octagonal shape 2-74 metres wide by 2-13
metres high. The tunnel is driven by electric motors with a totai output of 0-75 Mw producing
wind speeds of up to 100 ms~!. The tunnel was designed in 1939 and construction completed
in 194) since when the tunnel has been in almost continuous service.

Typical of tunnels built in this period, data acquisition and reduction during the early life
of the ARL tunnel was almost entirely manual. Through the years these processes have been
gradually automated. For example, the installation of a “Flexowriter” in the early 1960’s
allowed analysis of the data to be carried out on external computers in an off-line “‘batch” type
of operation. However, it was not until the early 1970's that the first true on-line data acquisition
system was installed. This system! collected input from a wide range of manually selected data
sources in a prearranged sequence, and output them (in serial form) to some storage device.
Initially, a Teletypewriter with paper tape punch was used as the output device, the paper tape
being input to the central site computer at a later time. Eventually, the output was connected
directly to the central site computer, allowing true real-time data processing. In its final form,
the system included a display screen, with processed data being returned from the central site
machine and displayed in near real-time.

By 1980 however, the central site computer had become overloaded, and the time taken for
processing wind tunnel data had become intolerably large. The restrictions involved with using
the central site processor together with the inflexibility of the overall system was also seriously
inhibiting the development of modern testing techniques. It was therefore decided to install a
dedicated mini-computer to be used solely for wind tunnel data acquisition and processing,
and tunnel control. This mini-computer, a Digital Equipment Corporation PDP-11/44, was
installed in July 1982, and following a short period of operation in parallel with the existing
system, took over all data acquisition and data reduction for the low-speed wind tunnel.

This report describes the development of the PDP-]1/44-based system. The emphasis is on
the development of software, although a description of the hardware is included where necessary
for a complete understanding of the software design. Consideration is given to the generai design
principles which have been used in developing the software, and to the design of an efficient
data structure. The majority of the software described is already in use, and has been operating
satisfactorily in many test programmes. The remaining few facilities which have not as yet been
fully implemented, are all under active development. The report concludes with suggestions
concerning the directions in which the system should be developed in the future.

2. OVERALL DESIGN PHILOSOPHY
Before describing the development of the system in detail, it will be useful to set out the general
philosophy which has been used while designing the system.
Of all the requirements of a well-designed data acquisition system there are two which are
of overriding importance:
(i) the system must be user-friendly and

(it) it must be conceptually simple and easy to maintain.

ol —— Rt 3 TS

”

PR

Considering the widely varying levels of skill and aptitude likely to be displayed by potential
tunne! operators, the need for user-friendliness is obvious. Any action on the part of a tunnel
operator, no matter how unrealistic, should produce a response from the system which allows
the test to continue in an orderly manner. Hence in all software, every operator input is checked
for validity, and extensive use is made of default replies and error recovery routines. Although
it is not possible at present (due to hardware limititaons), the long-term aim is that all com-
mupication between the tunnel operator and the data system should take place via a single display
terminal and keyboard. All commands to the system and all information requiring the operators
attention should be available at this single operators terminal. To further centralize system
operation, new instrumentation will not include the traditional local display facility. Rather,
the outputs of those instruments critical to a particular phase of a test will be displayed on the
operator’s terminal (see Section 7).

The need for conceptual simplicity and ease of maintenance is also obvious. For various
reasons it is very likely that a time will be reached when the original system designers are no
longer directly associated with it. The logic of the system must therefore be clear enough to
allow their successors to continue to develop and maintain it. Such logical clarity may only
be obtained by making use of good modern design methods, including structured programming,
modularity, and good programming style. Structured programming is a simple approach to
program design which produces programs which are easy to understand, evaluate and modify.
The major requirement of a structured program is the use of single entry and single exit control
structures: the most obvious difference between structured and non-structured programs is
the absence of GOTO statements. Modularity breaks the complete program up into modest
size sub-programs each of which performs one specific function. Each module should be self-
contained and should have minimum interaction with the remainder of the system. Hence, the
substitution of a new module of different design for an old one will affect only the specific function
of that module, leaving the rest of the system unchanged, a condition which is of considerable
assistance in program development and maintenance.

One of the major factors in producing a program which is easy to understand and modify
is the use of a high level programming language. The traditional disadvantages of a high level
language when compared with assembly language — requiring more memory and running more
slowly - - have been offset to a large extent by the development of modern optimizing compilers.
The added advantages of clarity and greater productivity with high level languages now give
them a clear superiority for the type of system dealt with here. The choice of a particular high
level language depends on several factors:

(i) It must possess the control structures to allow the use of structural programming.

(i1} It must be supported on the hardware in use and allow easy access to services
provided by operating system or executive.

(iii) 1t must be supported by a strong internationai language standard to ensure porta-
bility of software to different hardware should this become desirable at some time
in the future.

The only high level language which meets all of the above requirements is FORTRAN 77
(ANS Fortran X3.9—1978). This language has the added advantage of being familiar to most
of the people involved in the original development of the system. It was therefore decided to
use FORTRAN 77 for all programming of the data acquisition system, as has been done for
most similar installations around the world (see for example References 2 and 3),

3. HARDWARE

The data acquisition system hardware is based upon a Digital Equipment Corporation
PDP-11/44 central processor. The PDP-11/44 is a fourth generation I6-bit general purpose

2

———

———

b -

computer and includes 8 Kbytes of high speed cache memory to provide fast program execution
and high system throughput. In its current configuration the central processor is equipped with
512 Kbytes of error correcting memory and includes a floating point processor. The central
processor provides interface parts for a console terminal and a TUS8 cartridge tape drive used
mainly for diagnostic purposes. Atthe present time the peripheral configuration is (see Figure 1):

(i) Dual RLO2 removable disc drives each with a formatted capacity of 10 Mbytes.
Presently one of these drives is used as the system device, containing all system
and executive routines as well as space for program development. The second
drive is used as the primary storage device for data.

(ii) Dual RXO2 floppy disc drives each with a formatted capacity of 512 Kbytes.
These drives are used to archive both data and source programs.

(it) A Facit 4542 250-character per second dot matrix line printer.

(iv) An 8-port serial line multiplexer providing access to the system for up to eight
devices using RS232C standard protocol, operating at speeds of up to [9-2 Kbites
per second. At present three of these serial ports are used for general input/output
using visual display terminals, One part is used to support a colour graphics
terminal with a resolution of 1024 x 780 and another to suppprt an HP7221
multi pen plotter. Finally, one port is connected to the output of the existing data
serializer installed in 1970.

(v) Two independent DRI11-C 16-bit wide parallel input/output interfaces. These
parallel interfaces will be connected to a locally developed data bus which will
provide read/write access to all wind tunnel instrumentation.

Experience with the system since its installation in 1982 has indicated that although the
present configuration is generally satisfactory, the utility of the system (and tunnel productivity)
would be greatly improved by the addition of two major items.

(i) A large capacity, fast, fixed disc to be used as the system device. Experience has
shown that the use of an RLO2 disc as the system device is not entirely satis-
factory due largely to its limited capacity. A new drive of approximately
150 Mbytes capacity would allow a much more user-friendly system to be provided.
Such an addition would also alfow both RLO2 drives to be used for data storage
making possible concurrent acquisition and post-processing of data from different
tests, and increasing the system’s ability for on-line comparison with data from
other sources.

(i)) An industry standard magnetic tape drive. As the system has developed and tunnel
productivity increased, the amount of data generated has exceeded that expected
when the system was initially specified. This has meant that the floppy disc drives
with their limited capacity, have reached the limit of usefuiness as archival devices.
An industry standard magnetic tape would also increase the ability to transfer
data in machine readable form to customers.

Interaction between the software and the particular hardware configuration has generally
been negligible. The use of a high-fevel programming language together with the comprehensive
services provided by the operating system and executive (see next section) has allowed a sy.tem
to be developed which is very nearly machine independent. The one area in which the hardware
has had a considerable influence on system design is that of the form of input of data from the
wind tunnel instrumentation. The data acquisition system which existed when the new system
was installed in 1982 collected data from manually selected instrumentation sources and output
itin a prearranged sequence and in serial form. (Hence this device is known as the data serializer).
The initialization of a data output sequence was under the control of the operator via an electrical
push-button. Hence data become available at the data serializer output in an asynchronous

3

r— -

-
~—

-

manner: the device looking at this output has no control over the timing of the data stream
and only becomes aware of the beginning of a data system by its appearance at the output.
To enable the PDP-11/44 to be used in the data acquisition system as quickly as possible, without
a lengthy tunnel shutdown, it was decided to use the existing data serializer as the source of
instrument data as a short-term solution. As mentioned above, two parallel inputjoutput inter-
faces were provided as part of the system peripherals. Ultimately it is intended to use these paraliel
interfaces together with a locally developed digital data bus as the primary input/output interface
between the central processor and all tunnel instrumentation. The data bus provides full 16-bit
wide input and output plus control and addressing functions. It has been designed to allow input
or output to be sent to or received from any individual tunnel instrumentation source, in any
order, and with the timing controlled by the central processor software. When fully implemented.
this bus should greatly increase the flexibility of the data acquisition.

To avoid the need to shut the tunnel down for long periods while a changeover is made
from one input’output source to another, the development of the system has been planned in
three stages:

(i) All data are received {rom the data serializer connected to the central processor
via an RS232C serial line port.

(i) Data are received from the digital data bus and the data serializer, with instru-
ments being transferred from the serializer to the digital data bus as and when
hardware becomes available.

(iii) The final arrangement with all data being available on the digital data bus.

At the time of writing, the system has just entered stage (ii) with the first inputs becoming
available on the digital data bus.

Besides an increase in flexibility, the full implementation of the digital data bus will also
provide a worthwhile decrease in the time taken to acquire data. However, the ability to produce
output to an instrument and to control the timing of data transfers by means of the central
processor, will be far more important. Both of these facilities will allow a further concentration
of user communication with the system into a single device (the operator’s visual display ter-
minal), greatly increasing the user-friendliness of the overall system.

4. SERVICES PROVIDED BY THE OPERATING SYSTEM AND EXECUTIVE

The operating system chosen for supporting the data acquisition system is Digital Equip-
ment Corporation’s RSX-11M (Refs. 4, 5). RSX-{{M is a multiuser multitasking operating
system optimised for efficient real-time programming. Multitasking, the concurrent processing
of two or more tasks residing in memory, is accomplished via a priority ordered queue of tasks
demanding system resources. While it is true that only one task can have control of the central
processor at any instant, concurrent execution of several tasks can be achieved since other
system resources, particularly input/output device operations, can execute in parallel. While
one task is waiting for an input/output operation to complete, for example, another task can have
control of the central processor. Task execution is under the control of the operating system and
is event driven. A task retains control of the central processor until interrupted by a task with
higher priority. or until it becomes unable to continue (e.g. waiting for an input,;output operation
to complete) Task priorities may be set in the range | 10 250, with high priority real-time tasks
close to the upper limit. Additionally. for tasks of equal priority, an equitable share of central
processor time is allocated by the round-robin scheduler. At regular intervals (every 1/50th
second) the scheduler checks that no other task of similar priority is waiting. Operating tasks
have their priority reduced at every scheduler interval (over a limited range) and thus no single
task is able to dominate the central processor to the exclusion of all others. This round-robin
process is only applied to tasks with priorities of 150 or less, and hence reai-time tasks which
must retain use of the central processor unti) completion are not affected.

4

’ R T R

-

[

i T

—va

As well as controlling processor time allocation, the csecutive also provides the primary
interfaces between the hardware and a program running on the system, and between the hard-
ware and the people who use the system. Among these services are such functions as memory
allocation, device drivers, data and file management, system utilities and programmed system
services. The RSX-11M operating system provides a comprehensive set of programmed system
services called exective directives. These executive directives allow FORTRAN programs access
to many of the services provided by the exccutive and play a very important role in real-time
programming. The executive directives of unmediate use in the design of the data acquisition
system will be described in some detail.

(i) Task execution control. This group of dircctives allows one task to control the
execution of other tasks. A task may start another task (REQUES). request that
another task be run repetitively at predetermined intervals (RUN). or stop the
execution of another task (STOP, ABORT).

(t1) Task Status Control. The most useful directive in this group gives a task the
ability to dynamically change the priority of another task or of itseif (ALTPRI).

(iii) Event associated directives. This group of directives provides inter- and intra-
task synchronization and signalling. This ts achieved through the use of event
flags which are shared by some or all tasks which are currently awaiting execution.
Event flags may be set or cleared (SETEF, CLREF) which return as well the
previous state of the event flags. A task may wait for one (WAITFR) or more
(WFLOR) even flags to be set by the executive or by another task, thus allowing
synchronization between tasks. A task may also suspend its own operation for a
finite period before once again competing for system resources (WAIT or MARK).

(iv) Intertask Communication. The inter-task commui cations-related directives
allow a task to send and receive message packets to or from another executing
task (SEND and RECEIV). Data is transmitted in the form of 13-word FORTRAN
integer arrays. In order to synchronize the transmission of messages between two
tasks, the sending task specifies an event flag in the send dala directive, the event
flag being set when the executive is ready to pass the message packet to the receiving
task. The receiving task specifies the same event flag in a wait for event flag
directive and may then receive the message packet once the event flag is set.

(v

~

Input/Output C ommunications. These directives (Q1O and QIOW) allow tasks
to access input;output devices at the driver interface levels, thus allowing direct
mteraction with the device driver for operations which are not normally available
in the FORTRAN operating cnvironment.

(iv) Parent Offspring Tasking. These directives allow tashs to start other tasks, passing
commands to them if required, and to receive status information. For present
purposes the most important of these directives is the spawn directive (SPAWN)
which requests activation of another task. This directive has additional functions
which are not provided by the RUN or REQUES directives described above:
a spawned offspring task may be a commond line interpreter (CLI) and the
spawned offspring task can return current or exit status information to its parent
task.

The above is far from a complete list of directives provided by the caecutive, excluding
several important groups (notably memory management and trap-associated directives). A
complete description as well as details of the use of all directives may be found in Reference 4.

The use of executive dircctives provided by the particular operating system in use obviously
makes the data acquisition system softwarc machine dependent. However, care has been taken
to use only those functions which could reasonably be expected to be available, either in directly
equivalent or compatible forms, on any machine and operating system designed for use in a

5

=

real-time environment. Since the use of executive directives is by CALL's to system provided
FORTRAN subroutines, conersion to a different operating system would be relatively strajght
forward.

Before completing the discussion of services provided by the executive, the topic of system
traps must be considered. System traps are transfers of control {(sometimes called software
interrupts) that provide tasks with a means of monitoring and reacting to events. There are
two kinds of system traps:

(1) Synchronous System Traps (SSTs).—SSTs detect events directly associated with
the execution of a progi..... They are synchronous because they always recur
at the same point in the program when trap-causing instructions occur. Illegal
instructions or instructions with invalid addresses cause SSTs, and most SSTs
are associated with some sort of error condition. The operating system takes care
of SSTs with no intervention from the user, and no further consideration need be
given to them here.

(ti) Asynchronous System Traps (ASTs).——ASTs detect events that occur asynchro-
nously with a task’s execution. That is, the task has no direct control over the
precise time that the event — and hence the AST — may occur. The primary
purpose of an AST is to inform the task that a certain event has occurred -— for
example. the completion of an input/output operation. ASTs are dealt with by
means of short, user written (usually machine language) subroutines to which
control is transferred when the AST occurs.

The only use of ASTs in the system as it has been developed so far, is in monitoring ter-
ninals for unsolicited input. Without the use of an AST, a task must continually monitor the
input from a terminal if it is not to miss any unexpected user input. This is not only wasteful
of system resources, but can also slow up the operation of the system to a considerable extent,
To avoid this situation, an unsolicited input AST may be provided. When any character is typed
on a terminal, an interrupt occurs and control is transferrcd to the AST The AST sets an event
flag and any subsequent characters are stored in a buffer. Meanwhile, the main task can con-
tinue with its execution, checking the event flag occasionally. When the event flag is set, the task
can retrieve the tyy °d characters from the buffer. carry out any processing specified by then,
and then return to place where it was interrupted and continue. This process may be extended
to allow onc task to monitor the input from more than one terminal without needing to con-
tinuously monitor any of them.

S. DATA STRUCTURES

Modern wind-tunnel data acquisition systems are capable of producing a very large quuntity
of data. [t is not unusual to acquire twenty polars per day, with each polar containing twenty-five
model attifudes. Since cach model attitude considered may include up to twenty-five individual
pieces of data. it is quite possible for a single day’s running to produce 10 000 or more individual
data items. With such a rate of data generation, it is obvious that considerable thought must be
given to the design of an efficient data structure hefore proceeding with software design. This
section describes the data structure which has been implemented in the low-speed tunnel data
acquisition system.

In general, a wind-tunnel test program will involve testing over many independent variables.
Independent variables of interest could include model configuration, model attitudes, control
surface settings and Mach or Reynolds number. In a given test, particular combinations of
independent variable values are set up in the wind-tunnel, and one or more (usually more)
dependent variables measured, processed and recorded. Recent experience has indicated that
for a comprehensive full-model aircraft test program, up to seven independent and twenty-five
dependent variables are necessary. The most common approach to obtaining all the required

6

.— —

combinations of independent variables is to vary only one at a tive with all others held constant,
then to repeat thiv variation with some different set of constant vialues. The data structure has
therefore been designed to be hierarchical. successive levels being characterized by one or more
independent variables, with the frequency of variation of the independent variables decreasing
with each level. Thus the mghest level is characterized by the independent variable saryving
least frequently — in most cases the model configuration - - with successively lower levels being
characterized by independent variables varying more and more fregu -atly.

In practice. the data structure makes use of groups of files at the highest level, each group
of tiles containing data for a particular model configuration. At the next level, the data included
in each file relazes to a particular combination of values of independent variables known as “file
constants”. Experience has shown that at ihis level there is often little significant ditference
between the frequencies of variation of several independent variables, and this level may therefore
be characterized by up to four “lile constants™. Within each data file. individual data records
are grouped into “blocks™. each record in a data block being associated with the same value of
an independent variabfe known as the “data block constant™. At the lowest level, records within
a data block contain data for successive values of the most frequently varied independent variable
known as the “data block variable™.

Figure 2 presents an vxample of the implementation of the data structure for a test in which
the independent vanables are model configuration. Mach number (1), control surface deflection
(3). angle of sideship () and angle of incidence (). 1t is assumed that for this test programme,
each wind tunnel run consists of measurcments at a range of values of angle of incidence,
with this range being repeated for a range of values of angle of sideslip. Hence, for this test,
the data block »ariable s angle of incidence and the data block constant is angle of sideslip.
Fach data file thus contains blocks of data at constant values of angle of sideskip, with records
within cach block recorded tor a particular value of angle of incidence. Each file is characterized .
by two tile constunts, Mach number and control surface detfection, inferring that the model
attitude vanation would be repeated for each of the required combinations of these two variables. {
Fhe group of files shown in Figure 2 are all associated with a single model configuration. with 4
turther group of files associated with every other configuration considered.

Each duta ble contams a file header block consisting of three data records which completety]
describe the contents of the file. This information includes the number, names and values of the
tile constants, the names of the data block variable and data block constant, and a complete .
deseription of the contents of cach data record. This s in the form of the number of varnables '

m cach record (winch must be the same for cach record in the file) and a name to be associated
with ciach of these vanables. The intention of the file header is to allow programs which use the
data in these tiles, such as plotting programs, 1o interact with their users in a most straight forward .
manner. The user may refer to any picce of data in the file direcily by name and does not need
to have o preaise knowledge of tne detatded contents of the file.

Experience with this data structure has shown 1t to be capable of accommodating all test
programs so 1 cncoueicred i the fow-speed wind-tunnel. Its generality should allow its appli-
caton 1o dat dron other wind-tunnels with little or no modification. In addition, since its
implementation. o conviderable improvement in the quality of test program design has been
noted. presumahhy hrought about by the need to it the test program into the logical framework
of the da*) structure

6. SOFTWARE

This section deseribes detnle of the data acquisiton software. 1t is not intended to be

a user’s guide or to provide desenptions of algorithms and computational procedures: these

are maintained in machine-readable form on the central processor to allow simple revision to

. reflect the most recent version of the software. The intention 1s rather to give the reader an
overall impression of the function of each component of the system and how they interact.

7

L — e e . - -) ~-—-~V V ————

A data acquisition system must include, at the very least, the following basic functions:

(i) It must gather the raw data from the wind-tunnel instrumentation. In the present
situation, the data may be available on either the data serializer or on the digital
data bus. The svstem must be able to determine from which source a particular
piece of data is available, and accept it at the desired instant.

(i) It must be able to process the raw data in accordance with the requirements of
the particular test.

(i) 1t must produce d::ta files suitable for input to programs which will be used for
past-test data analysis, for example to produce plots and listings of the data for
delivery to customers and for publication in test reports. In addition. output
data should be in a form which allows for efficient long-term storage and archiving.

As well as these basic functions, it is desirable that the design of the system should include
the following:

(i) The ability to produce real-time display of the data as it is being recorded. as well
as an nteractive interface with the user to allow the tailoring of the display to the
immediate needs of a particular test. Such real-time display of data allows the
user to detect data which have been subject to any instrumentation malfunction
and to decide to repeat the point while the test is in progress. The ability 10 delete
such points from the data is also highly desirable.

(1) The abihity to recompute the data obtained in a particular run at some later time.
Such oft-line recomputation s useful 1o avoid having to discard otherwise satis-
factory data due to an error in processing or parameter specification.

(11) The mimmization of the number of discrete software packages. The number of
different types of test which can be carried out in a wind tunnel is quite large.
I a separate software package must be used for each different type of test, a de-
credase i tunne) ethaency will nesitably result, due both to lack of operator
famudianity with the software, and 10 the increased probability of little used packages
contwning undetected errors. Henee cach package must be as general as possible
and as much common code as possible used for every type of test.

The POP-11 43 i~ hasically o 16t machine Although it may address up to 4 Mbytes
of memory. the address space avarlable 1o any single task s imited to 64 Kbytes (65536 (64 K)
being the largest number which can be represented by 1) At a very early stage in the de-
velopment of the softwate. it was realized that the size of the program plus data storage areas
would vastly exceed this muvimum Thero are soveral methods avarlable to overcome this him-
tation (dynamic memory mapping, dise or memaory enerlaving ete) but it was decded to take
advantage of the intended use of the operating s ~fem asa mulb-tasking one. Hence the system
softwire has been wnitten as o series of interiimbed but sepdarate tasks Since cach task may use
up to 64 Kbytes of memory . the total memenrs need by the software 1« onhy bnmited by the number
of separate tasks in use fand 1o come cxtent vy the avatiable total memory capacity of hime con-
suming dise to memory transfers are teobe avordedt This approach also makes use of the

advantages of parallel processing mentoaned proviousiy
The system software in use Tor any particulat wind tunnet test therefore consists of two groups
of tasks:
> () A common group of Lasky which v always present regardless of the type of test.
Thesc tasks control all input of data from tunnel instrumentation and store them
i a raw data file. They provide the primary user interface with the system and
control the interaction and synchronization of all other tasks.
3
\ L . e -
L - —— .-
e . =
e, A

e

e

< o

- SYSEEE.

(i)

A group of tasks which Is job-specific, i.e. they change with the type of test. This
group of tasks carries out all job-specific computation and display functions,
and produces all job-specific (computed) data files. At present three job-specific
groups of tasks have been written: one to accommodate all tests in which forces
are measured be it by strain-gauge balance or underfloor balance (FRC), one to
accommodate pressure measurement testing of two-dimensional aerofoils (20P)
and a third to accommodate pressure testing of three-dimensional objects (3DP).
To aliow these job-specific tasks to be as flexible as possible, all are designed to
obtain details of the particular test from “configuration files”. Configuration
files contain information on what data are to be measured and from where they
are to be obtained as well as calibration data for strain gauge balances, trans-
ducers etc.

With the total software divided up into many individual tasks, procedures must be devised
for intertask communication. At present. intertask communication is conducted at threc distinct

levels:

(1)

(i)

(iif)

Inter-task communication through the setting and reading of event flags. This
is the lowest level of communication and is used mainly for intertask synchrom-
zation, Onc task sets an event flag to indicate to another task that it has completed
some operation. The second task can then wait for the event flag to be set before
proceeding with an operation which requires that the first task has completed
its operation. Event flags are also used to indicate that some exceptional event,
such as an operator or instrumentation error, has occurred.

Parameter transfer through the sending and receiving of message packets. This
mode of intertask communication is used by a controlling task to inform some
sub-task of the type of vperation required of it. The controlling task first fills a
thirteen-word message array with the parameters to be sent. It then invokes the
SEND directive, specifying event flag "n". When the controlling task can no longer
proceed without completion of the sub-task’s function, it waits for the sub-task
to indicate its readiness by setting another event flag *m’. When the sub-task is
ready to receive a message. it waits for the controlling task to set event flag "n* and
when set invokes the RECEIV directive to dequeue the next message. It interrupts
the parameters in the message array, carries out the required action. and when
fimshed sets event flag *m' to indicate that the controlling task may proceed. The
sub-task then returns to wait for the arrival of another message. With this type of
communication, quite complex operations can be carried out. with significant
overlap in controlling and sub-task execution.

Large-scale data sharing through the use of a global common area. This highest
level is used for most intertask communication of data arrays. The global common
ared is not unlike FORTRAN common, but instead of individua) sub-routines
sharing the data it contains, the data may be shared by many individual tasks.
The global common area is an 8 Kbyte area of memory accessible to all tasks
which have specified the resident common option at task build time (sce Reference 5.
Chapter § for details). Tasks may have read only or read/write access to the global
common, and hence it may be protected from corruption by tasks which need
only have read access. By linking to the global common area each task’s address
space is of course reduced by & Kbytes (to 56 Khytes) but the ability to share data
storage with any other task far outweighs any disadvantage.

The remainder of this section will indicate how the requirements and concepts discussed
so far have been realized. To do this. the operation of some of the tasks written for the system
will be presented in some detail.

Consider first the common (non job-specific) group of tasks. The main task associated with
this group is called DATAIN, and as far as the operator is concerned, this is the only task running.

e

9

When the operator runs DATAIN, its operation is as follows (see Figure 3). DATAIN first
enquires of the operator the type of job he wishes to run: at present the options are FRC for a
force measuring test, or 2DP or 3DP for two- or three-dimensional pressure measuring tests.
All other common group subtasks and job-specific sub-tasks required for the particular type of
job are then activated and initialized through SEND/RECEIYV directives. The mode of operation
must then be input. DATAIN has two modes of operation: on-line and off-line. For on-line
operation, the tunnel must be running and data is acquired directly from the tunnel instrumen-
tation. In the off-line mode, system operation is almost identical, except that the tunnel need not
be running, and all data are obtained from a previously recorded raw data file.

When operating on-line, DATAIN informs the operator of its readiness with a message
on the operators terminal. The operator has two options: he can press the data serializer
“record” push button to record a block of data, or he may type a command at his terminal.
The commands available to the operator are:

(i) Display sub-task parameter modification (D). This command allows the operator
to change the appearance of the real-time data display through changes to scales,
axes, quantities displayed etc.

(ii) Terminal display modification (7). This command allows the operator to modify
the format and contents of the data presented on the operators terminal.

(iii) Plot the present display (P). This command will produce a hard-copy of the
current display.

(iv) Block end within a tunnel run (B). This command is used to indicate the end of a
data block within a multi-block tunnel run.

Continue data file with next tunnel run (C). This command is used to indicate the
end of the current tunnel run. 1t is used when the next tunnel run will begin in a
short time and data are to be stored in files with the same names as those of the run
just completed. The command avoids the overhead involved in the initialization
dialogue of the main task and ail sub-tasks.

~—

(v

(vi) Reject the last set of data collected (R). This allows the operator to delete from all
files any recorded data in which he detects an error, or considers to be suspect in
any way. Only the immediately previous data point may be rejected and the data
point will be erased from the display if it is in use.

(vii) Abort the run (4). This command allows the operator to immediately end a run
when for example a serious malifunction is detected. All data recorded up to
that time will probably be retained but whether such data are of any use will depend
on the circumstances.

(viii) End the current file (E). This command informs the system that the current tunnel
run is completed and that no further data will be added to the data files at least
for the time being. Files which have been “‘ended™ can be added to at a later time
by specifying an option to “append to an old data file” during the initialization
dialogue.

Input of the single character memory corresponding to any of these commands is detected
by an unsolicited input character AST routine as described in Section 4. On detecting a typed
character this routine sets event flag number 73 causing DATAIN to branch to its command
interpreting routine (CMDINT) where the character is retrieved from the type-ahead buffer
and the required action undertaken. Activation of sub-tasks to carry out the desired action is
achieved through SEND/RECE!IV directives. The contents of the message packet and their
meanings are given in Figure 5. (Note that the same format is also used for actions other than

10
— - -

=

- ——

those directly accessible to the user by typing a command). If the command was Abort or End,
DATAIN awaits for all sub-tasks to complete the processing and then exits iteif. Otherwise,
once the sub-tasks have indicated completion DATAIN informs the operator of its readiness
once again and the process is repeated.

If, instead of typing a command, the user presses the record pushbutton, the process takes
a quite different course. Another member of the common group of tasks BUFFIN, which is
requested by DATAIN at initialization, detects the beginning of output from the data serialize
with another unsolicited input character AST routine. When this routine sets its event flag.
BUFFIN reads a line of data from the serializer and places it in a seven-line circular buffer in
the global common area. For each line placed into the buffer, BUFFIN sets a unique event flag
{with numbers in the range 65 10 71). The setting of one of those event flags indicates to the
serializer data decoding routine (INPUT) in DATAIN that that line may be removed from the
buffer, decoded and placed in the correct position in global common for other sub-tasks to make
use of in their processing. The rate at which INPUT can decode serializer data has been found
to be sufficient to avoid BUFFIN overwriting data before they can be decoded. Note that a
timeout period is also begun when the first line of data is received from the data serializer to
avoid the system waiting forever in the case where for some reason the data serializer does not
output the expected amount of data. If this time period expires before all the expected data are
received, a message is sent to the operator’s terminal and the process repeated.

Before processing the first data serializer line, INPUT instructs all sub-tasks to initiate input
from the digital data bus. This input is carried out in parallel with input from the serializer and
INPUT does not check for its completion until it has completed decoding the serializer input.
The operation of the digital input/output task DIGIOQ, also part of the common task group,
is described in Appendix A. Also at this time, raw data gathered from both the data serializer
and the digital bus on the previous record cycle are output to the raw data file. The delay in
output of raw data is necessary to allow the operator to Reject the previous data line if he so
desires.

Once all data are input and decoded, they are checked for validity and then computation
and display job-specific sub-tasks are instructed to carry out the required processing, once again
via SEND/RECEIV directives. When the sub-tasks indicate completion, DATAIN returns to
await the input of another command or the beginning of another data input cycle.

When operating off-line DATAIN reads data from previously recorded raw data files and
processes them exactly as described above. However in this mode, no operator input commands
are available, and some important ones must be simulated. The End command is easily simulated
by detecting the end of file on the raw data file. Conditions representing the Continue or Block
commands may only be detected by the job-specific sub-tasks. Hence before reading the next
group of lines from a raw data file, DATAIN checks the state of event flag 95 which will have
been set by a job-specific sub-task if one of these conditions existed for the data last processed.
In this case DATAIN instructs the sub-tasks to take the appropriate action, once again using
SEND/RECEIV directives.

DATAIN thus provides all the capabilities required of a data acquisition system. As many as
possible of the functions common to all wind tunnel testing have been compacted into a single
common group of tasks. Although there may be as many as six individual tasks active during a
test, this is hidden from the operator who appears to communicate with a single monolithic
system. Only those functions unique to a particular type of test are included in the job-specific
sub-tasks, and the operator’s knowledge of this organization is fimited to choosing the correct
“job type™ option for the type of test under consideration.

It is unnecessary to describe the operation of ail job-specific sub-tasks in detail, since their
general mode of operation is so similar that the description of one group will allow the others
to be understood with little difficulty. The sub-tasks chosen for description are FRC. the group
used for force measurements. This group has had by far the greatest amount of development
and use, and is the most general of all the current sub-tasks.

The FRC group consists of three distinct sub-tasks: COMFRC which is responsibfe for
the reduction of force data to a form suitable for presentation to customers or publication,
DSPFRC which is responsible for the real-time display of these data and BALMON which
monitors the state of loading of force balances, alerting the operator to dangerous conditions
due to approaching maximum load conditions. Both COMFRC and DSPFRC react to

r—

- —

b~ -

SEND/RECE]1V directives sent by DATAIN in the form presented in Figure 4. BALMON on
the other hand is simply requested by COMFRC and executes at set intervals until the tunnel
run is completed.

The structure of COMFRC is presented in Figure 5. COMFRC begins execution when
REQUESted during the initialization phase by DATAIN. Once running COMFRC interacts
with DATAIN via SEND/RECEIYV directives using event flags 81 and 91. Event flag 81 is set by
DATAIN in a SEND directive. COMFRC spends most of its time waiting for event flat 81 to
be set, indicating that DATAIN has sent a data packet. When it has completed processing
the instruction sent by DATAIN, or it has reached a stage where other processing may continue
in parallel, COMFRC sets event flag 91. Although the flow chart in Figure 5 infers that event
flag 91 is not set until each operation is complete, this has been done for clarity, and the actual
stage at which the event flag is set will be noted for each process. It should be noted that there is
no possibility of the two tasks getting into a “‘race” condition since there is always synchro-
nization at the receipt of the next data packet.

On receipt of a data packet, COMFRC decodes the first word ISEND(]) containing the
function code. The actions carried out for each value of the function code are:

(i) ISEND(1) = 0. This code is sent by DATAIN during the initialization phase at
the beginning of a run. The major functions are to obtain a file specification for
the configuration file, to read and verify its contents and to obtain from the
operator confirmation of any data which are illegal or inconsistent. The contents
of configuration files for force measurement testing are described in Appendix B.
Configuration files for other types of tests differ in the detail of their contents, but
provide much the same type of information. The information in the configuration
file is used to initialize many sub-routines used in the reduction and output of the
data (e.g. interference correction, attitude computation and output routines).
Finally, various counters and flags are initialized to their starting values. The
completed event flag (91) is not set until all processing is complete.

(ii) ISEND(l) == I. This code is sent by DATAIN on the completion of every raw
data input sequence. It is the normal mode of operation of COMFRC and con-
sists of the reduction of all data to a form where they may be presented on the
operators terminal and placed in a buffer in the global common area for use by
the display sub-task. The raw data used in this process have been placed into
fixed positions in global common by the input routines in DATAIN. Before using
the raw data, COMFRC checks it for validity and also checks that the storage
buffers in global common are not about to be filled. (The buffer size currently
limits the size of any data block to a maximum of 30 records). If the mode of
operation is off-line, the operation of this process is somewhat different. Firstly,
if the display is not in use, no data reduction is carried out since at this stage the
reduced data are only used for real-time display. Secondly, it is this process that
detects the end of a data block, and provides simulation of an End or Continue
command by setting an event flag (number 95). The completed event flag (91)
is not set until either an error condition is detected or data reduction is complete.

(iii) ISEND(1) == 3. This code is sent whenever a Terminal display modification
command is entered. The operator is interrogated as to the changes required to
the data format or content on his terminal, and the completed event flag set when
finished.

(iv) ISEND(!) - 4. This code is sent by DATAIN whenever BUFFIN detects output
from the data serializer. COMFRC interacts with the digital data bus via the task
DIGIO to obtain necessary data from that source. As mentioned above, this
process proceeds in parallel with input from the data serializer, and event flag 9]
is set upon compietion.

2

. e

—r

(v) ISEND(1) = 6. This code is sent whenever a Block end within run command
is entered at the operator’s terminal. Since the processing required consists only of
resetting various counters and flags, the completed event flag is set immediately
on receipt of this code 10 allow other sub-tasks to carry out similar processing in
parallel.

(vi) ISEND(1) = 7. This code is sent as a result of a Continue command being
entered on the operator’s terminal. When using strain-gauge sensing devices to
measure model forces, it is desirable to correct the raw strain gauge bridge output
for any drift with time. This is achieved by recording wind-off “"zero™ outputs.
both before a tunnel run is begun and after it has been completed. Hence before
processing the data recorded for the just completed data block, COMFRC first
checks that wind-off zeros have been recorded at the end of the run. If so. the
before and after zeros are averaged and used to correct the data before computing
all the required quantities. If these final zeros have not been recorded. a message
is sent to the operator’s terminal and the “failed™ event flag (number 96) is set to
notify DATAIN that processing has not been completed. Once all computation
has been completed, the data are output to files for {ater printing or further pro-
cessing. In this case the completed event flag is set as soon as data processing is
complete, output to data files proceeding in parallel.

(vii) ISEND(1) = 8. This code indicates the receipt of a Reject command at the opera-
tor’s terminal. All data in the last record are deleted from output files and global
common storage areas. In this case, the completed flag is set immediately on receipt
of the code and the Reject processing of all sub-tasks may proceed in parallel.

(viii) ISEND(1) = 9. This code is sent whenever an Abort command is typed on the
operator’s terminal. As much of the data as possible is saved by attempting to
close all files and COMFRC then exits. However, since an Abort command is
usually entered as the result of a serious system or operator malfunction, the success
of this operation cannot always be gauranteed and the state of the data may not
allow any useful recovery processing. To allow Abort command processing to
proceed in parallel, the completed event flag is once again set immediately on
receipt of this code.

(ix) ISEND(1) = 10. This code is sent as a result of an End command being typed
on the operator’s terminal. The processing is exactly the same as that for a Continue
(ISEND(1) == 7) with the exception that when all processing and output are com-
plete, rather than initializing a new data block, in this case all files are closed and
COMFRC exits. The completed event flag is set as soon as the validity (i.e. the
presence of a final zero) of the data has been confirmed.

(x

~

ISEND(I) = anything else. This option is provided as a default. [t should never
be entered, but if it is, a logical error in the software is indicated.

The above description of the operation of COMFRC is necessarily brief and somewhat
incomplete. Further information may be obtained from the operator's guide held in machine
readable form on the PDP-11/44, or if necessary from the program listing which includes exten-
sive comments. However the above description should provide an overview of the logical struc-
ture of the program in enough detail to allow future modification by someone other than the
designer.

The structure of DSPFRC, the real-time display sub-task of the force test group, is presented
in Figure 6. It will be seen that the overall program logic is identical with that of COMFRC
with only specific details of the processing carried out for each value of ISEND(1) being different.
This is true of most sub-tasks for other job-specific groups (e.g. 2DP, 3DP) and in fact such simi-
larity has been one of the major aims in designing the system. Once again, although the flowchart

13

.- — e - — e —— ettt sellarre—

[,

in Figure 6 infers that the “completed” event flag (92) is not set until each operation is complete,
this has been done for clarity, and in all processes not involving a dialogue with the operator’s
terminal, this event flag is set immediately the command has been decoded, and all actual display
operations proceed in parallel with other operations. For cases where dialogue with the operator
does take place, the event flag is set on completion of the dialogue.

Similar to the operation of COMFRC, on the receipt of a data packet, DSPFRC decodes the

first word, ISEND(1), and carries out the actions indicated by this function word as foliows:

a)

(i)

(i)

(iv)

(v

(vi)

(vil)

(viii)

(ix)

{SEND(1) = 9. This function sode is sent by DATAIN during the initialization
phase at the beginning of a run. The operator is asked to provide information
specifying the type of display — axes selection, data selection etc. — that he requires.
He is also asked whether he requires “historical™ data to be displayed and if so
the specification of the file containing these data. The ability to display historical
data for comparison with those cusrently being acquired is probably the greatest
improvement over previous on-line display systems. 1t allows the trends of current
results to be compared immediately with those of previous similar tests, and it
may be used to limit the range of independent variable if only the intersection of
current and historical data is required. (It is intended that in the future this
facility will be extended to allow the display to include data generated numerically
for direct comparison with experimental data). Finally DSPFRC draws the re-
quired axes, and if requested, the specified historical data.

ISEND(1) =). This code is sent by DATAIN following completion of the
“normal” computations carried out by COMFRC at the end of every raw data
input sequence. DSPFRC adds the newly calculated data to the display in its
current format having first checked that the latest data does not necessitate re-
scaling of the displayed axes.

ISEND(1) - 2. This code is sent on the receipt of a “Display parameter modi-
fication™ command at the operator’s terminal. The operator is interrogated to
determine the changes required to the display format.

ISEND(1) = 5. This code is sent on the receipt of a **Plot the present display™
command at the operator’s terminal. The current contents of the display screen
are rescaled to suit the physical size of the plotter, and an output file queued to
the plotter.

ISEND(1) = 6. This code is sent whenever a “*Block end within run™ command
is entered at the operator's terminal. The operator is asked for details of any
historical data to be displayed, the old data erased from the display and new axes
drawn.

ISEND(1) = 7. This code is sent as a result of a "Continue” command being
entered on the operator’s terminal. The reaction of DSPFRC is identical with that
of (v) above.

ISEND(1) = 8. This code indicates that a “*Reject’” command has been entered
at the operator’s terminal. All data from the previous record are erased from the
display.

ISEND(I) — 9. This code is sent as a result of an “Abort” command being typed
at the operator’s terminal. DSPFRC clears the display screen and exits.

ISEND(1) = 10. This code is sent whenever an “End™ command is typed at the
operator’s terminal. As for an “Abort™ command, the display screen is cleared
and DSPFRC exits.

14

—a————

|- -

—-—

(x) ISEND(1) = anything else. This is provided to catch all illegal values of ISEND(!).
A message is sent to the operator’s terminal indicating a logical error.

The final sub-task in the force measurement group of tasks is BALMON, the force balance
loading state monitor. The operation of BALMON, which is quite uniike that of either COMFRC
or DSPFRC, is represented in Figure 7. BALMON begins execution when REQUESted by
DATAIN in the initialization phase. Thereafter, BALMON begins a cycle of execution at set
time intervals, the interval being dependent on the type of force balance in use. During each
execution cycle, BALMON reads balance outputs from the digital data bus, computes the loads
acting on the balance using balance calibration data previously entered into the global common
area by COMFRC, and compares these Joads with maximum allowable loads for the particular
balance. If the maximum loads are exceeded, BALMON sends a message to the operator's
terminal, and the operator may modify or terminate the test to avoid damage to the balance.

The type of monitoring carried out by BALMON has become feasible only with the advant
of the digital data bus. Previously, input from the data serializer has occurred only on command
from the operator. Hence the state of loading of a force balance could be checked only at the
times that data were recorded. By this time, model attitudes and tunnel dynamic pressure would
all be stable, and if balance loads were greater than maximum, then this situation could have
existed for some time, perhaps causing irreparable damage to the balance.

This completes the description of the force measurement group of tasks. Together with the
non-job-specific group DATAIN, they satisfy all of the criteria for a data acquisition system
mentioned above. Perhaps the greatest attribute of the FRC group is its generality: it can handie
force testing for almost all forseeable test configurations, whether the model is mounted on
an external or internal strain gauge balance, regardless of the support system in use. Thus, a
single software package may be used in approximately 909, of the testing conducted in the low-
speed wind-tunnel.

The remaining job-specific task groups, because they are used in only about 109 of tunnel
testing, have received considerably less development. The two-dimensional pressure measure-
ment group of tasks (2DP) provides facilities for acquiring data via mechanical pressure scanning
switches (“scanivalues™) from pressure tapped two-dimensional aerofoil sections. These data
are converted to pressure coefficient form, integrated to give section force and moment coeflicients
and the pressure distribution displayed in real-time. All data are output in a form suitable for
post-test plotting or other analysis as may be required. In its present form, this group of tasks
can accommodate multi-element aerofoils with up to three elements, and has been successfully
used in an extensive series of tests to optimise the design of flap and aileron sections of the RAAF
Basic Trainer wing.

The three-dimensional pressure testing group of tasks (3DP) also acquires pressure data via
scanivalues. In this case however, the only processing is the conversion of these pressure data to
pressure coefficient form. Since no single form would be suitable for the full range of possible
physical configurations, no attempt is made to provide a real-time display capability, and the
data are simply output in a form suitable for use in post-test analysis.

7. FUTURE DEVELOPMENT

It is inevitable that the existing system will be modified and extended both in response to
changing requirements and to take advantage of developments in hardware and software.
Typical of these changes would be an extension of DSPFRC to allow comparisons between
current experimental results and the output of computer simulations. However, significant
improvements to the traditional methods of wind tunnel testing will become possible as more
data sources are transferred from the data serializer to the digital data bus,

When the data from a particular source are avaifable on the bus, an immediate advantage
will result from the ability of the software to access those data whenever necessary, rather than
waiting for the operator to initiate a data transfer via the data serializer read switch. Monitoring
and display functions such as those carried out by BALMON for balance outputs will then be
possible for other functions, greatly increasing the flexibility of the whole system. However, the

15

digital data bus has been designed to allow individual data source modules to be provided with
significant local intelligence, and it is this area that will produce the most significant advantages.
Such local intelligence could be used either to pre-process raw input data before they are passed
to the central processor, or to control some function according to commands transmitted from
the central processor.

To indicate the potential for reducing the tunnel operator’s work load and the resulting in-
crease in tunnel productivity, the operation of two possible intelligent data sources, model
attitude and tunnel speed, will be explored in more detail.

(i) Model attitude: Currently each of several model attitude parameters has a separate
display and its own set of manual controls. Each display, including those not
being used in the current test, competes for control desk space and for the
operator's attention. As each model attitude parameter is transferred to the
digital data bus, local displays may be deleted and the values of just those attitude
parameters of interest in the current test may be sampled several times per second
and used to update displays on the operator’s terminal. Initially the control
function would remain manual, but as the system is developed, a feedback
control system could be implemented to set each attitude parameter to values
specified by the central processor in response to instructions typed at the operator’s
terminal. Such a system would not only make the tunnel operator’s job much
easier but also open up the possibility of conducting testing in new and novel ways.
One such possibility is the concept of constant aerodynamic parameter testing,®
in which attitude is controlled so as to maintain some parameter, for example
lift coefficient, constant while other parameters are varied.

(ii) Tunnel speed: Presently, tunnel speed control is achieved by manually matching
the required value of dynamic pressure with that displayed on the control desk.
The availability of tunnel dynamic pressure on the digital data bus would allow
the data acquisition software to check that the current value is equal to the desired
value (input at the operator’s terminal) before beginning to record data, thus
avoiding one of the most common reasons for rejecting data points. The addition
of tunnel temperature and static pressure to the bus would allow their combination
with the measured dynamic pressure to calculate locally the tunnel velocity, unit
Reynolds number or Mach number. That quantity of most interest in a particular
test could then be displayed on the operator’s terminal. Again it would be possible
to develop a feedback control system to control tunnel speed. Tunnel speed could
then be controlled to maintain constant dynamic pressure, velocity, or Mach or
Reynolds number as desired, the required value being input by the operator.
Once again, such a system would not only reduce the operator's workload, but
also lead to worthwhile improvements in productivity due to the faster reaction
to speed perturbations caused by attitude changes than in presently possible with
manual speed control.

Individually these two intelligent sources would each contribute significantly to tunnel
productivity. Together they provide the possibility of a completely new approach to wind tunnel
testing — the computer controlled test. The tunnel operator would enter the desired tunnel speed
or set of tunnel speeds and the attitude range to be covered. Control would then pass to the
computer which would maintain the desired tunnel speed while recording data at each attitude.
Control would then pass back to the operator who, on the basis of the on-line data display,
could either accept the run or add more data points in critical or interesting areas. Although
such operation may appear somewhat ambitious, it is a highly-desirable goal which could be
achieved within the next two to five years.

16

[R

o A—

PR

———

8. CONCLUSIONS

The data acquisition system based on a PDP-11/44 central processor has now been installed
in the low-speed wind tunnel for more than two years. During that period, several major test
programmes have been conducted in the tunnel, and the data acquisition system has performed
satisfactorily at all times. Depending on the type of test being conducted, tunnel productivity
has been increased by a factor of between three and five over that with the previous system.
The time taken for raw input data to be converted to the desired form and displayed has been
reduced from an average of 30 seconds (and at times of high loading, up to three minutes) when
using the central site computer, to an average of a little under two seconds with the new system.
It is clear that further major gains in productivity will be available in the future through improve-
ments to the model attitude and tunnel speed control systems. Development of intelligent data
source modules connected to the digital data bus will further enhance these gains.

The choice of a muiti-tasking multi-user operating system has been shown to be correct,
the present operating system providing all the facilities needed and being ideally suited to the
type of real-time operation required by a data acquisition system. The combination of this
operating system with FORTRAN 77 has also been successful. Of the more than 10 000 lines
of code (excluding comment lines) which have been produced so far, only 50 lines have had to
be written in Assembly Language. The use of FORTRAN 77 has produced a system which
can be quickly coded, is easy to follow, and simple to maintain and modify.

Although many changes have been made to the software over its life so far, all have been
changes in detail. No changes have been necessary to the overall logical design and it would
appear that the present design is sufficiently general to incorporate the requirements of the data
acquisition system for many years to come.

e g

ST > - - WA .-

v

W. F. L. Sear, C. W. Sutton
and J. F. Harvey

J. M. Cambra, and G. P. Tolari

.C.H. Fox

R. L. Palko, A. D. Lohr

REFERENCES

A Versatile Data Acquisition System for a Low-Speed
Wind Tunnel. A.R.L. Aerodynamics Report 155,
November 1980,

Real-time computer data system for the 40- by 8Q-foot,

wind tunnel facility at AMES research centre. NASA-
TN-D-7970, 1975.

Real-time data reduction capabilities at the Langley
7- by 10-foot high-speed tunnel. NASA-TM-78801,
1980.

RSX-11M/M-PLUS Task Builder Manual. Digital
Equipment Corporation, 1981.

RSX-11M/M-PLUS Executive Reference Manual. Digital
Equipment Corporation, 1984.

A Constant Parameter Testing Technique with Auto-
matic Wind Tunnel Control. AIAA Paper No. 78-784,
1979.

e

NOLLVHNOIINOD IHVYMQYVH

1 "O13

muwuu.mwm , 43410174
a TVNINYGIL TYNINGIL IVNINHIL 1ZZLdH
HOX3dILNW JAIHA MSIa 3JAIHQA XSI0
HILN(HJ INT IViYas Add0d Tvnga an Gt Tvna
Z¥SY 110V INITg Ll —za ~ Z0XY - 204
snamn
on on
AHOW3W ndo
137vHvd LEGAL aw % v¥/11-40d
21140 J-LiHa
SN8 vLvQ 1vL1ioia
i
34V4L330
85N1
N £ 4 t
ID1A30 301A30

301A3d 30IA3Q

-

CONFIGURATION #t

o nm——n 7

FILE #1 FILE #2 FILE #J
M= M, MM, M= M
5 =8, 5 =5, 5 <5,
FILE HEADER FILE HEADER FILE HEADER
BLOCK 1 BLOCK 1 BLOCK 1
8- B, 8~ B, 8= 8,
BLOCK 2 BLOCK 2 BLOCK 2
8= 6, g=0, 5=6,
BLOCK K BLOCK K BLOCK K
8=, 8-, 5= 8,
RECORD1 a = q,
RECORD2 «a - a, } .
RECORDN a = oy J
INDEPENDENT VARIABLES: CONFIGURATION, M. 5, 6, a
FILE CONSTANTS: M, &
DATA BLOCK CONSTANT: @ -
DATA BLOCK VARIABLE: a
FiG. 2 DATA FILE STRUCTURE '
- o
- B L e, }

- -

- -

- - -——

input JOB name

Activate all
sub-tasks for
JOB + non-specific
sub-tasks

Input on/off line
+ verity JOB
Input raw data
filespec

Verify raw data '
filespec and
open raw data
file
|-
t
on line ?
YES :
Is
etn 95 se1? Teli operator
we are ready
SEND to sub-
tasks to compute
all blocks in Wait for either
this run efn 65-serializer
or
] efn 73-command
Wait for sub-tasks
to indicate
completion Is
E T efn 65 set? _________________l
CMDINT
Read next YES l 'Ge! c?;n\;nand |
i rom type
line from raw SEND t0 al! I ahead bufter ’
data file +
interpret it sub-tasks to | |
fhierp odegin digital [|
1/0 from/to bus H Tmerpret command
' + SEND appropriate |
to all |
INPUT | sub-tasks |
1f not failed l
write last fine [] *
. fain?ﬁé%f,":} to raw data file [Wait for sub- |
1s this end of data | tasks to indicate |
the last line pletion
? L Get a line in I |
from the
YES Wait for sub- serializer buffer l '
tasks to + interpret it] |
indicate l |
completion ~
o | I §0 tf not failed |
NO e Tast Tine | write last line |
EXIT ’ I to raw data file l
YES |] |
I SEND to all |
Is sub-tasks to do
the data OK | eND/ABORT | R
| processing I
Put failed « false SEND to subtasks | | Woit for subtasks 1 |
+ send message to process this ' t0 indicate I
to operator line | completion |
Wait for sub- ' EXIT
tosks to indicate | | [exT ||
completion e —_—————— e —~ f
>I<
= |
'?1 FIG.3 STRUCTURE OF TASK DATAIN s
¢
: S U S !
e . i ... 2 S e - e sebes |
. .

-

FIGURE 4

DATAIN Message Packet Format

(a) Contents of the Message Packet

Word
Number Contents

1 ’ Command buffer
2 ‘ = 0 if operating off-line; = 1 if operating on-line
3 = 0 if a new data file; = 1 if appending to an old

\ data file
4-13 i Unused
(b) Interpretation of Command Buffer
|
; \ Equivalent
Contents \ Meaning [Command

0 'J Carry out sub-task initialization g‘l —
1 l Process a normal data record —
2 | Modify display characteristics D
3 | Modify operators terminal display T
4 ! Commence digital bus data transfer ! —
5 ! Plot the current display l p
6 Block end within a tunnel run : B
7 Continue current data file with next tunnel run C
8 ‘ Reject the last data record : R
9 " Abort this run " A
10 | End this run E

~——
B - e ——— t— ‘
-}
D4 W0 WSV L 40 IHNLINKLS G O14
ﬁ(tll] ———— e S——
v 1vIvd
96 uid 15 vpe) 96 4y e 15aNnbas
payey 135 pANAAWod 1ag PRy} 3G ues NIVLIYQ
u 05 G§ 43 135
painbas 8114 B1E)) HPS 2134 kr
se sah) NOY Mau .uu>..«.uy
ANAING lutig € 221181 N ON S.0H3ZNY
Sail (e 380D Seutg”
~ ON
N0 Beg
* S3A
ALL $300(9 {je sayy uado e Ty ten uns s pannbai SR aut} Byep
0) abessapy aindway o1 00 G PIR[ju AU G R U W1E MaU 01 1vLI0Ig ﬂo.%ﬁzﬁoE TYWHON »sey-qns
Hser-qns 0} TIVIVO IIVO s 1HOBY BRETE L v areniNg a1um peay ®IdSip ALl © 5530044 3ZITVILINI
PUS OYIVANI una s N3
: ~ o] o B 1] | L
SH3HLQ
1V
wxed e1en
APOIAP 1 I
L) 12410 138
e AL3IDIY
uiLiem si abessa
2ANIVIYVO
AG1as 3g 0)
18 U3 10} Hep
1 Lg ugd
— Pa130Wod 135
MO Butyun
[ERUERT N
Niviva
K
pPa1S3INDIY
x81-GNS
- 4
N o R el

© rwangy

.

- - —— S - - & W
" A2
t
{ Set pleted \
\ efn 9 /]
to set efn 82:
data packet .
is ready y !
]
1 .,
)
RECEIV dsta
packet: clear
efn 82: decode
data packet
Case of i
ISEND =?
ALL '
OTHERS
F [[F @ [T T |
o ¢
NITIALIZE Process a Modify Copy current INITIALIZE 2 CONTINUE REJECT the ABORT this END this INVALID=ed]]
sub-task NORMAL DISPLAY display to new black in this file in last data run: close run: tlose 8
fine parameters PLOTTER this run next run POINt display process display process ___.ouuﬁ._x_.< 4
Get type of Add points to Get type of Historical data Delete last Set completed
Display display — display filespec? data point efn 92 o
escale .” from display f
Display axes Display axes e
& histarical & historical
data data
Display axes
and historical 1
data 4 3
.
i
- 1 »
FI1G.6 STRUCTURE OF TASK DSPFRC i
! t
!
\ H
I}

——

- —

REQUESTED
by
DATAIN

MARK time
for 1 second

Read all
balance outputs
via DIGIO

Compute
batance loads

YES > 90

safe loads
?

Send
message to
aperator

FIG.7 STRUCTURE OF TASK BALMON

————-

- —

————— s

APPENDIX A

The Digital Data Bus Input/Output Task (DIGIO)

DIGIO is a task which carries out data transfers between the digital data bus and the area
of memory dedicated to global common. The task is accessible to any of the common or job-
specific tasks which need to communicate with the bus.

Before proceeding with a description of the design and operation of DIGIO. the arrange-
ment and capabilities of the digital data bus itself, and its associated device driver wiil be
described.

The digital data bus consists of 16-bit wide input and output busses and a 16-bit wide control
and status register (CSR) connected to the UNIBUS of the PDP-11/44 via a DR11-C general
purpose digital interface. Each module connected to the data bus is associated with one or more
bus addresses, each of which may be used for either input or output. To output data to a particular
address, the address bit (CSR®) is set in the CSR and the desired bus address loaded onto the
output bus. Once the address is accepted (indicated by setting REQ A on the CSR) the data
to be output are loaded onto the output bus (with CSR@ cleared) and the data will be transferred
to the specified address. For input, the procedure is similar except that when the address is
accepted (REQ A set), this also indicates that the required data are available and may be read
from the input bus.

A software device driver has been written to provide FORTRAN callable subroutines to
interface with the DR11-C and hence the digital data bus. These subroutines and their functions
are as follows:

Subroutine Function

KDRATT Attaches a specified DRI{-C interface to the calling task giving that task
exclusive use of the DR11-C until it detaches from it.

KDRDET Detaches the specified DRI1-C from the calling task allowing other tasks
access to it.

KDRSTA Alocates a local event flag to be set whenever REQ A is set — also sets
INT ENB A which causes an interrupt to be initiated whenever REQ A
is set.

KDRSTB Same function as KDRSTA but acts on REQ B.

KDRCLA Clears INT ENB A and isassociates event flag from the interrupt.

KDRCLB Same as KDRCLA but acts on INT ENB B.

KDRINP Reads data from a specified DR11-C. Contents of the CSR, output bus, and

input bus are input.

KDROUT Outputs data to a specified DR11-C. Output may be to the CSR or output
bus or both. Note that output to the CSR will have INT ENB bits masked
out, i.e. can only output to CSRO and CSRI.

————

e .

Hardware interrupts are simulated by associating an event flag with a particular interrupt —
when the interrupt occurs, the associated event flag is set. Hence the driver does not have
Asynchronous System Trap routine support and is therefore compatible with standard
FORTRAN. The calling task can “'see” an interrupt by waiting for the particular event flag
to be set (WAITFR). Note that it is the responsibility of the calling task to clear event flags
following interrupts.

DIGIO makes use of these subroutines to provide a system-wide service for any task wishing
to communicate with the digital data bus.

When designing DIGIO it was necessary to consider the wide range of ways in which re-
questing tasks would make use of the data transfers provided by DIGIO. These include:

(i) Use by one of the common group of tasks to output constants to an intelligent
local data source during the initialization phase of a tunnel run.

(i) Use by a task controlling the operation of same function to send desired set point
values to intelligent data modules, e.g. transmitting desired values of attitude
to an automatic attitude control module.

(iiiy Use by a monitoring task to read data from a modufe at regular intervals, either
to update a display on the operator’s terminal, or to check on the state of some
device, e.g. BALMON monitoring the state of loading of a strain-gauge balance.

(iv) Use by a job-specific computation task to obtain data from the required sources
when requested by the operator (or at some future time by some overall test con-
trolling task).

Of these various uses, it is clear that those gathering data {type (iv)) must gain access to
DIGIO immediately. (This will be specially important while data are input from both the data
serializer and the digital data bus to ensure that data from both sources are attributable to the
same instant in time). In general it is possible that all the above types of tasks (with the possible
exception of type (i)) could require access to DIGIO at the same time. Thus it is necessary to
associate a priority with requests for DIGIO from various types of tasks. At present, the priority
may be either “high” or “low”, with tasks of type (iv) making high priority requests and all
the others low priority ones.

Communication between DIGIO and requesting tasks is implemented via parameter
transfer through SEND and RECEJ}V directives, as described in Section 7. The contents of the
13-word message array used in this transfer is:

Word (1)—opriority of the request (low = 0, high = 1).

Word (2)—number of an event flag to be set by DIGIO if the data transfer is completed
successfully.

Word (3)—number of an event flag to be set by DIGIO if the data transfer has to be aborted
or produces an error condition,

Word (4)—direction of the desired data transfer (input from the bus = 0, output to the
bus = 1),

Word (5)—number of data items to be transferred.

Word (6)—index of an address buffer in global common containing the address of the first
device to be accessed.

Word (7)—index of a data buffer in global common to or from which the first data item is
to be transferred.

ot bt o)

——-

Note that word (6) and word (7) are the indices of the first address and data locations,
each buffer containing as many entries as specified by word (5) following these initial entries.

Having filled the message array, a requesting task then invokes the SEND directive specifying
event tlag number 72 for a low priority request or event flag number 73 for a high priority request.

The structure of DIGIO is presented in Figure Al. On being REQUESted (during the
initialization phase of DATAIN) DIGIO attaches to the DR11-C associated with the digital
data bus (thus ensuring the exclusive use of that interface) and associates event flags with and
enables the DR11-C hardware interrupts. An attempt is then made 1o RECEIVe a message
packet. If this atiempt is successful, i.e. one or more message packets have been queued for
DIGIO by the executive, DIGLO checks the high priority request event flag (number 73) and scts
a high priority waiting flag to true if it is set, and then clears both high and low priority request
event flags (72 and 73). If the attempt to receive a message packet fails, i.e. there are none queued,
DIGIO waits for either the high or low priority request event flags to be set before attempting
again to receive a message packet. At this stage it is possible that the message packet just received
is a low priority request while a high priority packet remains qucued. DIGIO is aware of the
presence of a high priority request packet in the queue since the high priority request event flag
would have been set when checked, causing the high priority waiting flag to be set to true. To
avoid delaying processing of high priority requests DIGIO immediately checks the contents of
word (1) of the message packet. If this word is zero, indicating a low priority request, and the
high priority waiting flag is true, DIGIO abandons the processing of the low priority request,
sets the faited event flag (specified by word (3)) of the requesting task. and returns 1o receive
another message packet. High priority requests will of course never be abandoned in this way.

Once a message packet has been accepted for processing, DIGIO checks the contents of
word (4) of the packet to determine the direction of the desired data transfer. For transfers
from the digital data bus (read). the address of the first device to be read is obtained from the
address buffer in global common using the contents of word (6) of the message packet. The
address is loaded into the output buffer of the DR11-C and the address bit set in the CSR.
DIGIO then waits for the occurrence of a DR1I-C interrupt to set an event flag to indicate that
the address has been accepted as valid, and that the required data are available in the DRII-C
input buffer. The input buffer is then read, the data converted from external (complementary
offset binary) to internal (two's complement integer) form and placed in the data buffer of the
global common area according to the contents of word (7). The above procedure is repeated
until the required number (word (5)) of data transfers have been completed. The operation of
a write transfer is similar except that following acceptance of a valid address, data are obtained
from the global common data buffer, converted to external form and loaded into the DR11-C
output buffer. When all requested data transfers are complete, DIGIO sets the requesting task’s
success event flag, resets the high priority waiting event flag to false, and returns to attempt to
receive another message packet.

The present structure of DIGIO does not guarantee that high priority requests will always be
processed before all low priority ones. It is possible that when DIGIO checks the high priority
request cvent flag that there are already two or more high priority requests in the queue. DIGIO
will ignore all low priority requests up to the first high priority one and then process it. However,
when this data transfer is complete. the high priority waiting flag will be reset to false, thus
nullifying DIGIO'S knowledge of further queued high priority requests. This situation can only
arise when two high priority requests are queued before DIGIO can begin processing the first
one. Since high priority requests only arise as a result of a computation task’s need to read data
from the bus. and at present this only oceurs at intervals of a minimum of several seconds. the
chances of the above situation arising are extremely remote. Thus at present. this shortcoming
of the task can be ignored, but may need to be considered in the future if the mode of operation
of the data acquisition system is modified.

’
’

+
L

i

- |

b

—

Requested
by DATAIN

Attach to DRIIC
and associate
efn’s with
interrupts

Set efn to
tell DATAIN we
are running OK

|
RECEIV

message packet
if there is one
queued

Was
one queued
?

YES

NO

Wait for either
high or low
priority message
efn to be set

e

Check whether
high or low priority
Set priority
Clear efn’s

Check whether
high or low priority

Set priority
Clear efn's

l

RECEV message

Y —_—

packet &
decode
|
Ignore current NO s this YES L
packet — set packet high P:':imh",
taited efn priority? sethigh’
YES = NO
‘Read data?
Read data as Convert data
required and to COB and
convert to output as
integer required
Priority NO
set high?
Write input
data to raw
data file
buffer
YES Error? NO
Set failed Set success
efn efn
] i
|
Reset priarity
to low
FIG. A1 STRUCTURE OF TASK DIGIO
- = o
, e

—-

APPENDIX B

Format of Configuration Files for Force Measuring Tasks

Force measurement task configuration files bring together all information required to acquire
and compute the data for a wind tunnel test involving force measurement. These files are ASClI
format to allow easy editing, and the contents of each record is:

(i) A job title consisting of up to 50 characters used as a description of the particular
test.

(i1) A customer name containing up to 40 characters, describing the organization for
whom the test is being conducted.

(i1} This record contains information concerning the data structure:

CONF1G—a configuration reference number,

FCONST(I)—the names (12 characters) of up to four file constants.
FCVAL(I)—the values of the file constants for this file.
DBCONS—the name (12 characters) of the data block constant.

DBCTOL-~the tolerance within which the data block constant is to be considered
“‘constant™.

DBVAR-—the name (12 characters) of the block data variable.

(iv}-(viii) These five records may contain up to 72 characters each of free format description
of the configuration and the type of test.

(ix) This record contains reference lengths and areas for use in non-dimensionali-
zation:

C - the mean acrodynamic wing chord,

PRV

B --the wing span,
S - -the wing area,
RENLEN -the length scale for use in determining the Reynolds number.

This record contains information required for computing blockage and lift inter-
ference:

=

F1. F3 - -blockage factors for wing and fuselage,
VOLW, VOLB -volume of wing and fuselage,

: TAUIW, TAUIB, TAU2W, TAU2T Iift interfence factors for the wing, fuselage
and tailplane,

DELTA!t tunnel lift interference factor,
CDO -estimate of model zero hft drag,

WLCS -estimate of the wing lift curve slope.

+ R - - —— —

{ ~ . T

- _ B . . . b
——————

—

(xi) This record contains an integer indicating the number of movable surfaces to be
considered in the test.

(xii) This record contains information on each movable surface and is repeated for each:
SURNAM-—the name (12 cnaracters) of the moving surface.
DEFSUB-—the subscript (2 characters) to be appended to the surface deflection,

HINGE—a logical variable which if true indicates that hinge moments are
measured for this surface,

NSG2CH —the amplifier channel number connected to the hinge moment strain-
gauge bridge,

HFCAL, HDCAL-—calibration factors for hinge moment and surface deflection,

REFLAN, REFA—reference length and area to be used to reduce hinge moments
to coefficient form,

REMOTE—a logical variable which if true indiactes that this surface is remotely
activated,

NCDCH-—the remote activator channel number connected to this surface.
(xiii) This record contains information concerning any powered propeller in use:
POWER —a logical variable which if true indicates that a powered propeller is
present,
NAUXCH—the channel number at which propeller r.p.m. is available,
PROPD—the propeller diameter.

(xiv) This record contains information on the type of model mounting and the source
of attitude angles:

MOUNT—=1 if the model is mounted on a strain-gauge balance supported by
a rear sting,

=2 if the model is mounted on a strain-gauge balance supported via a central
pylon and rear spear,

=3 if the model is mounted on the under-floor balance,
NTHETA —the address at which pitch angle information is available,
NPSI—the address at which yaw angle information is available,
NPHI-—the address at which roll angle information is available.

(xv) This record contains information concerning the orientation of the balance with
respect to the model.

XBAL, YBAL, ZBAL—location of the model centre of gravity with respect to
the balance moment centre,

THBAL, PSIBAL, PHIBAL—angular offsets of the model body axes system with
respect to the balance axes system.

(xvi) This record contains the offsets of the attitude sensors (THETA®, PSI9, PHIQ)
when the model body axes system is aligned with the tunnel axes system.

(xvii) This record contains the six elements of the balance direct sensitivity matrix.

S —. —— 4

e e

e |

- ——

p———

(xviii)-(xxiit) These records contain the 36 elements of the first order (linear) balance interaction
matrix, X1(I).

(xxiv)-(xxix) These records contain the 126 elements of the second order (non-finear) balance
interaction matrix X2(1).

(xxx)-(xxxv) These records contain the 36 elements of the inverse of the first order balance
interaction matrix X1INV(l).

(xxxv)-(xxxx) These records contain the (26 elements of second order balance interaction matrix
premultiplied by the inverse of the first order balance interaction matrix, i.e.
X1INVeX2.
(xxxxi} This record contains the five elements of the balance deflection matrix.
(xxxxii) This record contains thesine elements of the model tare weight matrix.
(xxxxiii) This record contains logical variables indicating in which form results are to be

presented. Force and moment coefficients may computed in body-, stability- or
wind-axes and these logical variables indicate the users choice for each component.

S

e A A + .

-~

-

DISTRIBUTION

AUSTRALIA

DEPARTMENT OF DEFENCE

Central Office
Chiet Defence Scientist
Deputy Chief Defence Scientist
Superintendent, Science and Program Administration
Controller, External Relations, Projects and Analytical Studies
Defence Science Adviser (UK) (Doc. Data sheet only)
Counsellor, Defence Science (USA) (Doc. Data sheet only)
Defence Science Representative (Bangkok)
Defence Central Library
Document Exchange Centre, DISB (18 copies)
Joint Intelligence Organisation
Librarian. H Block, Victoria Barracks, Melbourne
Director General - Army Development (NSQO) (4 copies)
Defence Industry and Material Policy, FAS

(1 copy)

Aeronautical Research Laboratories
Director
Library
Superintendent—Aerodynamics
Divisional File—Aerodynamics
Author: B. Fairlie
M. A. Balicki
K. A. O'Dwyer
M. K. Glaister
J. F. Harvey
J. N. Hodges
N. Pollock
C. W. Sutton
J. Wattmuff

Materials Research Laboratories
Director/Library

Defence Research Centre
Library

Navy Office
Navy Scientific Adviser

!
Army Office
Scientific Adviser—Army
Air Force Office
Air Force Scientific Adviser
Aircraft Research and Development Unit
Scientific Flight Group
Library
Technical Division Library
Director General Aircraft Engineering—Air Force
HQ Support Command (SLENGO)
RAAF Academy, Point Cook
Government Aircraft Factories
Manager
Library
STATUTORY AND STATE AUTHORITIES AND INDUSTRY
Austratian Asrcraft Consortium Pty. Ltd.
Mr D. Pitkinglon
Mr R. D. Bullen
SEC of Vic.. Herman Research Laboratory, Library
Commonwcalth Aircraft Corporation, Library
Hawker de Havilland Aust. Pty. Ltd., Bankstown, Library
Rolls Royee of Australia Pty. Ltd., Mr C. G. A. Bailey
UNIVERSITIES AND COLLEGES
Adelnde Barr Smith Library
i Professor of Mechanical Engineering
} Fhnders Library
! f.a Trobe Library
Mclbourne Engineering Library
, Monash Hargrave Library
3 Newcastle Library
) Sydney Engineering Library
! NSW Physical Sciences Library
Quecnsland Library
Tasmania Engineering Library
Western Australia Library
RMIT Library
» Dr P. H. Hoffman, Aero. Engineering
CANADA
NRC
Aeronautical & Mechanical Engineering Library
FRANCE
ONERA, Library
- - - -
} eI . o ettt s —, s
: *
f._.h—j-:-——'____- NP SN - Iy P :’

. Wt

L T

P mem

A carg o e

INDIA

Defence Ministry. Aero Development Establishment, Library
National Aeronautical Laboratory, Information Centre

JAPAN

Institute of Space and Astronautical Science, Library

NETHERLANDS
National Aerospace Laboratory (NLR), Library

NEW ZEALAND

RKNZAF, Vice Consul (Defence Liaison)
Transport Ministry, Airworthiness Branch, Library

SWEDEN

Acronautical Research Institute, Library

UNITED KINGDOM

CAARC, Secretary
Royal Aircraft Establishment
Bedford, Library
British Library, Lending Division
Aircraft Research Association, Library
Motor Industry Research Association, Director

Universities and Colleges

Bristol Engineering Library

Cambridge Library, Engineering Department
Whittle Library

Manchester Professor, Applied Mathematics

Nottingham Science Library

Southampton Library

Strathclyde Library

Cranfield Institute
of Techinology Library
Imperial College Aerodynamics Library

UNITED STATES OF AMERICA

NASA Scientific and Technical information Facility
Applied Mechanics Reviews

SPARES (20 copies)

TOTAL (120 copies)

a—-

Department of Defence

DOCUMENT CONTROL DATA

Y

1 a AR No | 1 b. Establishment No. 2. Document Date 3. Task No.
AR 003 997 ARL -AERO- R-163 February, 1985 DST82/022
2 Tue \ T 5. Security 6. No. Pages
A REAL-TIME DATA ACQUISITION SYSTEM | a document 30
FOR A LOW-SPEED WIND TUNNEL Unclassified
b. title c. abstract { 7. No. Retfs
U U 4

.‘ < Authars) 9. Downgrading Instructions
'k 5 1y Farhe
¢

|

BRI (:()v;;ol»’;lf‘ Author and Address 11. Autharity (as appropriate)
" AFRONAUTICAL RESEARCH LABORATOR]ES.| g‘ 290"50' g- 20“'“9’?*“9
P> Box 4331, G.P.O., Melbourne, Vic., 3001 - Secuny - Appiova

T2 Secondary Distribution (of this document)
Approved for public release

P Overseas enquirers outside stated limitations should be referred through ASDIS, Defence information Services
Brarcn Department of Defence, Campbell Park, CANBERRA, ACT, 2601.

13 a This document may be ANNOUNCED in catalogues and awareness sefvices available to .
No limitations

¥3. b Ciauon for other purposes (i.e, casval announcement) may be (select} unrestricted (or) as for 13 a.

14 De;(—,n;nors 15. COSAT! Group
Wind tunnels 01010

Data acquisition 4, o

Real-time operations - % - b ooy

16. Abstract

A mini-computer based real-time dala acquisition system designed for use in the Aeronautical
Research Laboratories low-speed wind tunnel is presented. The report provides an overview of
the logical arrangement of the software components of the system and describes their inter-
action with the mini-computer operating syste: 1. data structures, and system hardware.

This page is to be used to record information which is required by the Establishment for its own use but
which will not be added to the DISTIS data base unless specifically requested.

16. Abstract (Contd)

7. tmprint)
Acronautical Research Laboratories, Melbourne

-~

] 18, Docur;e;t Series and Number 19. Cost Code 20. Type of Report and Period Covered

Acrodynamics Report 163 546060 —

‘

kN Computer Programs Used

22, Establishment Frie Ref(s)

